Evaluation of Surface Cleaning Procedures in Terms of Gas Sensing Properties of Spray-Deposited CNT Film: Thermal- and O2 Plasma Treatments
نویسندگان
چکیده
The effect of cleaning the surface of single-walled carbon nanotube (SWNT) networks by thermal and the O₂ plasma treatments is presented in terms of NH₃ gas sensing characteristics. The goal of this work is to determine the relationship between the physicochemical properties of the cleaned surface (including the chemical composition, crystal structure, hydrophilicity, and impurity content) and the sensitivity of the SWNT network films to NH₃ gas. The SWNT networks are spray-deposited on pre-patterned Pt electrodes, and are further functionalized by heating on a programmable hot plate or by O₂ plasma treatment in a laboratory-prepared plasma chamber. Cyclic voltammetry was employed to semi-quantitatively evaluate each surface state of various plasma-treated SWNT-based electrodes. The results show that O₂ plasma treatment can more effectively modify the SWNT network surface than thermal cleaning, and can provide a better conductive network surface due to the larger number of carbonyl/carboxyl groups, enabling a faster electron transfer rate, even though both the thermal cleaning and the O₂ plasma cleaning methods can eliminate the organic solvent residues from the network surface. The NH₃ sensors based on the O₂ plasma-treated SWNT network exhibit higher sensitivity, shorter response time, and better recovery of the initial resistance than those prepared employing the thermally-cleaned SWNT networks.
منابع مشابه
Synthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties
Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine. The as-coated films were preheated at 150 ºC fo...
متن کاملOptoelectronic Properties of PbS Films: Effect of Carrier Gas
In this study, lead sulfide (PbS) films were grown on Fluorine-doped TinOxide (FTO) glass substrate by thermal evaporation in a horizontal furnace toinvestigate carrier gas effect on structural, morphological, elemental, optical, electricaland photovoltaic properties of PbS. X-ray diffraction (XRD) patterns confirmed theformation of cubic polycrystalline PbS particles fo...
متن کاملTHE EFFECTS OF PLASMA SPRAY PARAMETERS ON THE MICROSTRUCTURE AND PHASE COMPOSITION OF THERMAL BARRIER COATINGS MADE BY SPPS PROCESS
In this paper the effect of plasma spray parameters, atomizing gas and substrate preheat temperature on microstructure and phase composition of YSZ coatings produced by SPPS process have been investigated. The experimental results showed that increasing the power of plasma, using hydrogen as the precursor atomizing gas and increasing substrate preheat temperature decrease the amount of non-pyro...
متن کاملEffect of Using Cold Plasma Treatment on the Surface and Physicochemical Properties of Starch-chitosan Composite Film
Background and Objectives: Cold plasma is an eco-friendly and non-thermal technique, which has become an important technology to change the physical and chemical features of polymers. Recently, cold plasma has been considered in the decontamination and modification of packaging materials in the food industry. Therefore, the objective of this study was to survey the effect of using low-pressure ...
متن کاملEnhanced methanol sensing performance of oblique deposited WO3 thin films
Methanol (CH3OH) is a colorless liquid with a mild odor. The wide ranges of applications, toxicity and clinical implications of methanol have made necessary to develop reliable and high-performance methanol sensors. In this paper, WO3 thin films were deposited on SiO2/Si substrates by e-beam evaporation technique under normal and oblique angles and then post-annealed at 500 °C with a flow of ox...
متن کامل